Koordinatengeometrie - Lineare Funktionen und ihre Graphen

Baustein 3 - 2(5)

Tangente am Kreis - Konstruktion

In Aufgabe 14.3 (c) haben Sie bereits eine "Kreistangente" kennengelernt. Sie hat mit dem Kreis genau einen Punkt, den "Berührpunkt" gemeinsam.
Aus dem Geometrieunterricht der Mittelstufe ist bekannt, dass die Tangente auf dem Berührkreisradius senkrecht steht. Dies lässt sich zur Tangentenkonstruktion nutzen.

 

14.5

Zeichnen Sie zunächst mit dem Zirkel auf Papier  in ein Koordinatensystem (Einheit: 1cm) einen Kreis um (0 | 0) mit Radius r = 5cm sowie die Tangente im Punkt B(3 | ?) !
Hilfe zu 14.5
Lösung zu 14.5

14.6

Ermitteln Sie die Gleichung der Tangente durch Rechnung, indem Sie die Steigung des Berührradius durch (0 | 0) und B(3 | ?) ausnutzen!
Hilfe zu 14.6
Lösung zu 14.6

14.7

Zeichnen Sie dann die gefundene Gerade und den Kreis aus 14.5 in das Graphikfenster von DERIVE!

Lösung zu 14.7
14.8

Bestimmen Sie analog für den Kreis mit dem Mittelpunkt M(2 | 0) und dem Radius r = 3 die Gleichung der Tangente im Berührpunkt B(1 | ?)!

Lösung zu 14.8
14.9

Stellen Sie Kreis und Tangente aus 14.8 im Graphikfenster von DERIVE dar!

Lösung zu 14.9
Seitenanfang Zurück

Weiter
Inhalt Grundlagen Bausteine