
Thema: Die Sinuskuve als eine zeitliche abhängige Zuordnung

Die Sinuskurve ist aus einer Zuordnung des Winkels α , gebildet von einem Zeiger sowie der Waagerechten, zur Senkrechten des Zeigers entstanden. Schrittweise wurde so Winkel für Winkel die Sinuskurve ermittelt.

Diese Zeigerbewegung erfolgt nun mit eine bestimmten Geschwindigkeit. **Rotationsbewegungen** werden in der Physik vereinfacht beschrieben mit:

$$mit \quad \omega = Winkelgeschwindigkeit \\ \alpha = Winkelwert \\ t = benötigte Zeit für Winkelwert$$

Damit ist die Zeigerstellung und damit der jeweilige Winkel α von der Zeit t abhängig.

$$\alpha \longrightarrow \alpha(t)$$

Somit wird auch die Sinuskurve eine zeitlich abhängige Zuordnung:

$$f(t) = \sin(....t)$$

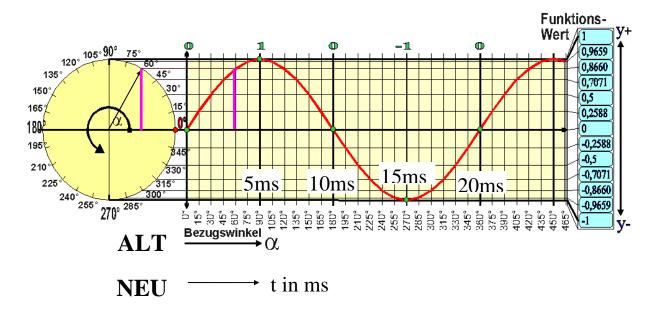
Der Winkelwert ergibt sich dann aus der Umstellung der obigen Formel:

$$\alpha(t) = \omega t$$

Dann gilt:
$$f(t) = A \sin(\underline{})$$

Nun können wir auch für die Winkelachse eine Zeitzuweisung vornehmen. Das ist allerdings nur bei einer bekannten Rotationsgeschwindigkeit ω möglich!

Beispiel: Der Zeiger rotiere in einer Sekunde 50 mal. Dann legt der Zeiger in einer Sekunde einen Winkel von $50*360^\circ=1900^\circ$ zurück. In der Elektrotechnik ist das Bogenmaß üblich. Dann gilt: $50*2\pi=314$.


$$\omega = \\ = > \omega = _____(Winkelgeschwindigkeit in RAD/s)$$
Dann gilt: $\alpha_1 = 90^\circ = \pi/2$ <==> $t_1 = \alpha_1/\omega = ____ = ____ ms$

$$\alpha_2 = 180^\circ = \pi$$
 <==> $t_1 = \alpha_1/\omega = ____ = ____ ms$

$$\alpha_3 = 270^\circ = 3\pi/2 <==> t_1 = \alpha_1/\omega = ____ = ____ = ____ ms$$

$$\alpha_4 = 360^\circ = 2\pi <==> t_1 = \alpha_1/\omega = ____ = ____ = ____ ms$$

Wir erkennen, dass nach einer Zeit von 20ms eine neue Umdrehung beginnt. Die Dauer einer Periode bezeichnen wir entsprechend als : **Periodendauer**. Die erreichten Werte zum jeweiligen Zeitpunkt werden als **Momentan-** oder **Augenblickswerte** bezeichnet.

NEU: Besser in °, damit die obige Darstellung umgeschrieben werden kann!! ODER Obige Darstellung zur Erinnerung in RAD